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Transient motion of a dipole in a rotating flow 
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The question of whether or not waves exist upstream of an obstacle that moves 
uniformly through an unbounded, incompressible, inviscid, unseparated, rotating 
flow is addressed by considering the development of the disturbed flow induced 
by a weak, moving dipole that is introduced into an axisymmetric, rotating 
flow that is initially undisturbed. Starting from the linearized equations of 
motion, it is shown that the flow tends asymptotically to the steady flow deter- 
mined on the hypothesis of no upstream waves and that the transient at  a fixed 
point is O(l/t) .  It also is shown that the axial velocity upstream (x < 0 )  of the 
dipole asx-f - cowith t fixedis O( 1 ~ 1 - ~ ) ,  asin potential flow, but is O( I Z I - ~ )  as t+co 
with 1x1 fixed. The results extend directly to closed obstacles of sufficiently small 
transverse dimensions and suggest the existence of a finite, parametric domain of 
no upstream waves for smooth, slender obstacles. The axial velocity in front of 
a smalI, moving sphere at  a given instant in the transient regime is calculated 
and compared with Pritchard’s laboratory measurements. The agreement is 
within the experimental scatter for Rossby numbers greater than about 0.3 even 
though the equivalence between sphere and dipole is exact only for infinite 
Rossby number. 

1. Introduction 
Does the uniform translation of an obstacle in an otherwise unbounded, in- 

compressible, inviscid, rotating or stratified fluid induce upstream waves-in 
particular, waves that produce a finite change in the conditions at an injnite distance 
upstream of the obstacle Z This question has been posed many times, but its answer 
remains controversial. It may be posited that no such waves exist in the limit 
of potential flow (no rotation or stratification); it also is generally accepted that 
such disturbances do exist for sufficiently strong rotation or stratification and 
are responsible for blocked jlows, which are characterized by Taylor columns and 
upstream stagnation zones, respectively. The appropriate similarity parameter 
for a given body is either 

ko = NE/U, ( l . l a )  

or k, = 2n1/u = k, ( l . l b )  

where 1 is a characteristic length, U is the translational speed, N is the intrinsic 
(VBisiila) frequency and is assumed constant, and s2 is the rotational speed; 
potential flow corresponds to kj + 0, blocked flow to k j  + co. Both I%, and k, are 
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reduced frequencies or wave numbers; alternatively, k,f,, is an inverse Froude 
(Rossby) number. We replace k, by k in 3 2 et seq., wherein only rotating flow is 
considered. 

It appears to be widely accepted by meteorologists [see Queney et al. (1960) 
or Yih (1965) for discussion and references] that an obstacle of height I does not 
produce upstream waves in a stratified flow if k, is sufficiently small. This pro- 
position is supported both by the solution of relevant initial value problems (see 
Queney et al. 1960) and by experiment (Long 1955). It also appears to be generally 
accepted that upstream waves do arise for sufficiently large values of k,. The 
latter proposition is supported by Bretherton’s (1967) solution of the initial 
value problem for a circular cylinder as k, -+ co and by Long’s (1 955) experiments. 
The hypothesis of no upstream waves for an obstacle moving along the axis of 
a rotating flow, originally proposed and investigated by Long (1953), appears to 
be controversial for any k, > 0 [see Greenspan (1968), Miles (1969), and Pritchard 
(1969) for recent discussions]. 

Trustrum (1964) considers the transient development of rotating and stratified 
flows on the hypothesis of small disturbances (as in $ 2  below) and gives solutions 
for stratified flow, in a channel of finite height, induced by either a line-sink 
or a line-source distribution in a plane normal to the flow and for rotating flow 
past a porous disk. She concludes that “the assumption of a uniform undisturbed 
upstream flow, which has been basic to most theories in both stratified flow and 
rotating fluids is probably not valid”. She also notes, however, that “the solution 
for a [plane] dipole with its axis along the direction of the uniform stream.. .has 
no terms independent of II: and so its influence does not extend to upstream 
infinity”. 

We regard the implications of this last statement as decisive, at least for bodies 
of sufficiently small transverse dimensions, by virtue of the established fact that 
the motion associated with either two-dimensional, stratified flow over an 
obstacle of finite cross-section or rotating flow past an axisymmetric body of finite 
volume can be attributed to an equivalent distribution of axial dipoles (Miles & 
Huppert 1969; Miles 1969). This holds also for flow past any closed stream surface, 
but not for separated flow with an infinite wake, for which the inviscid solution 
contains a source term. Motivated by this fact, we consider here the transient 
development of the disturbance following the abrupt introduction of an axial 
dipole into a previously uniform, rotating flow. We anticipate that the resulting, 
steady-state disturbance is essentially identical with that obtained by Fraenkel 
(1956) for steady flow on the hypothesis of no upstream waves. The corresponding 
development for a two-dimensional stratified flow follows by analogy.? 

It would be sufficient for our primary purpose to infer the non-existence of 
cylindrical waves in the asymptotic solution for the dipole as t -+ co either from 
the non-existence of a component proportional to S(a) in the Fourier transform 
(a is the wave-number) of that solution or from the temporal invariance of the 
dipole moment of the developing solution (which we prove in 3 4 below). It appears 
to be worthwhile to go a bit further, however, and to discuss (in 8 4) the form of 

7 Crapper (1959) demonstrates the absence of upstream waves or a dipole in a stratified 
flow but does not consider the transient development of the solution. 
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the developing solution, especially in the neighbourhood of the upstream axis, 
and to obtain (in $5) an explicit, asymptotic approximation to the transient 
component of the solution. 

We infer from the analysis of $ 4  that the axial velocity upstream (z < 0) of 
a moving dipole as 2 --t - co with t fixed is O(  XI-^), as in potential flow, but is 
O(Ix]-l) as t+m with 1x1 fixed and is typically much larger than in potential 
flow. We give an explicit example in $6, where we calculate the axial velocity in 
front of a small, moving sphere at  a given instant and compare the results with 
the laboratory observations of Pritchard (1969). The agreement is within the 
experimental scatter over the complete range of the data, 0.8 < k < 3.2, which 
is perhaps better than might have been expected for an approximation (of the 
sphere by a dipole) that is strictly valid only for k -+ 0. We emphasize that the 
comparison between theory and experiment is for an accelerated flow, in which 
separation may reasonably be expected to be less important than in the corre- 
sponding steady flow for a sphere. It does suggest, nevertheless, that the 
axial flow observed upstream of a moving body in a rotating flow of finite 
dimensions might easily be interpreted as a Taylor column under circumstances 
in which it could be satisfactorily explained without discarding the hypothesis 
of no upstream waves. 

We infer from the analysis of $5 5 and 6 that the hypothesis of no upstream 
waves is valid for unseparated flow and sufficiently small disturbances. The 
latter restrictions appear to be reasonable for smooth, slender obstacles of axial 
length 1 and transverse diameter €1 and sufficiently small values of both e and 
k j e  [slender-body theory applies in the limit e + 0 with k j  fixed; see Miles & 
Huppert (1 969) for j = 0 and Miles (1969) for j = 13. The quantitative meaning 
of suficiently small almost certainly must be determined by experiment, but, in 
any event, it  seems likely that a steady flow calculated on the hypothesis of no 
upstream disturbance is unstable for values of k ja  larger than that value of kje  
a t  which the streamlines exhibit local reversals (see Miles & Huppert 1969 and 
Miles 1969). 

The assumption of steady, unseparated flow is not realistic for bluff obstacles, 
such as a sphere (even though the accelerated flow past such obstacles may 
remain unseparated). Separation of the flow past such obstacles typically yields 
a semi-infinite, trailing wake (and perhaps also a forward wake), the inviscid 
representation of which requires a source (Stewartson 1968). 

2. Initial value problem 
We render all lengths and time dimensionless by reference to the character- 

istic length 1 and the characteristic time 1/U, where U is the basic flow speed.? 
We satisfy the equation of continuity by deriving the x and y components of the 
perturbation velocity from a dimensionless stream function $ according to 

{. - u, 4 = UY-y - $y> $J, (2.1) 
t The length Z is arbitrary for the dipole problem, in consequence of which k could be 

eliminated from the dipole solution by choosing 1 = (U/2n) .  Such a choice would obscure 
the limit of potential flow (k + 0). 

28-2 
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where x is the axial co-ordinate, y is the cylindrical radius, and the subscripts 
imply partial differentiation. 

Substituting (2.1) into Euler's equations, invoking the hypothesis of small 
disturbances, and eliminating the pressure, we obtain (cf. Trustrum 1964, after 
allowing for differences of notation) 

L$ i [(a, + az)z  (a; + yav y-laJ + P a ; ]  $ = 0, (2.2) 

where the operators a,, a, and 8, imply partial differentiation, and k is given 
by (1.1). 

The azimuthal (swirl) component of the velocity in the axisymmetric rotating 
flow is given by 

w = Ql[y- 2y-la,(at+a,)-1$] ( 2 . 3 ~ )  

I = Ql y-2y-1az $ ( x - 7 , t - 7 ) d 7  [ s: (2 .3b )  

The boundary condition corresponding to the introduction, at  t = 0, of a dipole 
of unit moment at  x = y = 0 is (see below) 

$ = &x)H( t )  (Y = 01, (2.4) 

where 6(x) is Dirac's delta function, and H ( t )  is Heaviside's step function. We 
also impose the finiteness conditions (which could be made somewhat weaker) 

l$9$z&/l - t o  (1x1 o rY+a) -  (2.5) 

(2 .6 )  

Invoking the assumption that the flow is uniform for t < 0, we obtain the initial 
conditions 

except at  the singular point, x = y = 0. 

$ = a,$ = 0 (t  = 0) 

Referring to (2.4), we observe that the flow is initially irrotational and that 
the axial-dipole solution in such a flow is given by 

I,? = ir-1 sin2 8, 

where r and 8 are spherical polar co-ordinates: 

x = rcos8, y = rsin8. 

Letting y 4 0 in (2.7) and observing that the dipole moment is unity, 

we obtain lim $,-,(x, y) = S(x). 
Y & O  

3. Integral transform solution 
We define the Laplace and Fourier transform operators and their inverses 

according to 

Zt( 1 = p"t( ) d t  (WO > O), ( 3 . 1 ~ )  
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J r - i m  
m m 

gZ( ) = 1 e-ias( )dx, 9i1( ) = (27r-11  eiar( )da, ( 3 . 2 a ,  b )  
-m -m 

and the transform of @ according to 

(3 .3 )  
where u is a complex variable with a positive real part, y is a real number that 
places the path of integration to the right of all singularities of Y in the B plane, 

v y >  a, 4 = %%@(x, Y7 t ) 7  

- ia+ ik 

- i a  

- ia- ik 

io- L + k  k 

c plane a plane 

FIGURE 1. The branch points of h in the c plane for real cc 
and in the a plane for gia > 0. 

and a and p are real. The properties of these operators, as well as the transform 
pairs required in the subsequent development, are given in Erddlyi, Magnus, 
Oberhettinger & Tricomi (1953), to which we refer by the prefix EMOT, followed 
by the required entry number. We do not seek complete mathematical rigor, 
but all subsequent operations on singular functions can be justified through 
generalized-function theory (Lighthill 1959). 

Transforming (2 .2 )  and (2 .4 )  and invoking ( 2 . 6 ) ,  we obtain 

(yavy-lay - h2) Y = 0 (3.4) 

and Y = B-1 (y = O ) ,  (3.5) 

where A 2  = a2{1 + P ( v + i a ) - 2 } .  ( 3 . 6 )  

Y = r-lAyK,(hy) = c-lE(hy) (&?A > O ) ,  (3.7) 

The required solution of (3 .4 )  and (3.5), subject to the finiteness condition ( 2 . 5 )  
at y = co, is 

where K ,  is a modified Bessel function. The branch cuts of A ,  qua function of 
either a or u, are determined by the restriction 9 A  > 0 (9 = real par t  of) and 
are sketched in figure 1. 

4. Initial development 

a to real values, we obtain 
Invoking the initial value theorem for the Laplace transform and restricting 
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Invoking EMOT 1.4(1) and 1.12(41), we obtain 

lim @(x, y ,  t )  = @o(x, Y ) ,  (4.2) 
t $ O  

where $o is given by (2.7). 
We now introduce the auxiliary function 

ml, t )  = =W(-@[r(l+ c-2),1 --@(TI}, (4.3) 

where the real part of (1 + r2)* is positive. Invoking (4.1), (4.2), and the scaling 
and shifting theorems for the Laplace transform, we obtain the inverse Laplace 
transform of (3.7) in the form 

K{$-$~} = k / ' e"~74( la l  0 y,7~7)d7.  (4.4) 

Invoking (3 .2b)  and resolving the a integrand into odd and even parts, we obtain 

We remark that F(0,  k7) = 0, by virtue of which @ does not contain a cylindrical 
(x-independent) component (the existence of which would require gX$ to have 
a delta-function singularity at  a! = 0); moreover, the dipole moment of $ is 
equal to that of $o, since 

m 1 {@-@o}dx = ~ x { $ - @ o } a = o  = 0. (4-6) 
-03 

We may interpret $ - @o as a superposition, over a! = (0, CO) and 7 = (0, t ) ,  
of individual waves of wave-number a and amplitude kF(ay,  AT), each of which 
originates at t = 7 and then moves downstream with speed U or, equivalently, 
remains at  rest with respect to the fluid at  infinity. We anticipate that the cumu- 
lative effect of these waves yields a system of standing waves in the lee of the 
dipole (or obstacle). 

The result of (4.5) is directly useful for kyt < It-sl. Substituting (4.3) into 
(4.5) and carrying out the a! and cr integrations in that order [EMOT 1.12(41), 
5.4(23)], we obtain 

( 4 . 7 4  

(4.7b) 

where R( t )  = {(z - t )2 + y2}&, (4.8) 

and R = R(7) in (4.7a, b ) .  Letting kyt /R 4 0 in (4.7b), we obtain 

We return to this result in $ 6  below. 
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5. Asymptotic development 
The dominant contributions to $ as t -+ 00 are associated with the singularities 

of cr-lE(hy) at u = 0, - ia and - ia rf: ik. We separate out the contribution from 
cr = 0, say 

$, = di”,’LY;’{dqzJ(a2- k2)i-J) ( 5 . l a )  

( 5 . l b )  

where (we now relax the original restriction to real a) the path of integration 
in the a plane is indented under the branch points at  a = f k (the branch points 
of h at a = icr f k tend to the real axis from above as cr -+ 0 in 9 c r  > 0) .  
Having accounted for the singularity at cr = 0, we modify the representation of 
(4.5) to obtain 

as follows: 

= n-lglom E[y(a2 - k2)a] eiax da, 

$ = $m-(k/n)Sm 0 daSm t F(ay, k7)~0~{a(x-7)}da, (5.2) 

where F(7,t)  = LYt1{E[7(1+~-2)*]}  ( t  > 0). (5.3) 

The function F determined by (5.3) is identical with F in $ 4  for t > 0, and the 
dominant terms in its asymptotic approximation are associated with the singu- 
larity at cr = 0 (corresponding to the singularity st u = ia in the original plane). 

Expanding E about cr = 0 and invoking EMOT 5.5(37) ,  we obtain 

(5.4) 

m e  note that the contributions of the singularities of cr = i (u = - ia f ik  
in the original cr plane) to F are O(~2t-2).] Substituting (5.4) into (5.2), approxi- 
mating the integral with respect to 7 by integration by parts, and invoking 
EMOT 2.7(18) t  for the a integration, we obtain 

P(r, t) =%l{(nrl/2fl)*exp ( - r/@) = (rl/2t)* GOS (2(rlt)q. 

(5.5a) 

N $,+(ky/2n)~t-lcos(ky+$r) (t --f 03, x < t). (5 .5b )  

We remark that (5 .5a ,  b )  are not uniformly valid for ky + co; however, this limit 
is of little interest in the present context. 

We conclude from (5.5) that @ tends asymptotically to the steady-state, 
dipole solution is due originally to Fraenkel 
(1956). It has the asymptotic representations 

as t -+ co. The dipole solution 

$, N k H ( x )  sin kr sin2 0 (kr -+ co), (5.6) 

and $m N - gkx-’yJ,(ky) (x -+ -a), (5.7) 

provided that 0 is bounded away from &r in (5.6) and y is bounded in (5 .7 ) .  We 
also note that 

This entry contains a misprint and should read (~/y)jcos(&+y-l+ in). 
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6. Comparison with experiment 
The dipole solution y? provides the basis of the solution of (2.2) and (2.4) for 

an axisymmetric body of scale length 1 as k -+ 0 by virtue of the facts that: $tends 
to a potential function, say y?p, as kr -+ 0; $p for any closed body exhibits a 
dipole behaviour as r i, co, say 

@&, Y) W&, Y) ( r  -+ co), (6.1) 

where D is the dipole moment of the body with respect to axial translation. It 
follows that 

$(x, YI t )  w-&, y, t )  ( k - t  0) ( 6 . 2 ~ )  

Wr,(x, Y) (kr -+ 01, (6.2b) 

where @D is the dipole solution of $ 5  3-6 above, is an outer, asymptotic approxi- 
mation for a small, closed obstacle of dipole moment D H ( t )  that may be matched 
to the inner approximation 1cp8(x,y) H ( t )  in 1 < r < l/k. 

Pritchard (1969, figure 6) reports measurements of the axial velocity upstream 
of a moving sphere in a circular tube of large radius (9.6 sphere radii). He compares 
his results with a theoretical calculation (Greenspan 1968, $4.3)  for a disk moving 
at low speeds ( k  --f 00) on the “assumption that, at  high Rossby numbers, the 
waves whose group velocity is less than the velocity of the obstacle are eliminated 
from the Taylor column ahead of the obstacle”. This assumption implies that the 
upper limit in Greenspan’s (4.3.13) may be replaced by k (in the present notation), 
in consequence of which the axial velocity u/ U is rendered independent of both 
x and t and depends only on k .  This contrasts with Greenspan’s original result, 
which implies an asymptotic representation of ulU as k -+ co, x --f co and t -+ 00 

and is independent of U ,  and with Pritchard’s own measurements, which imply 
a significant dependence o f u l U  in both x and t .  Despite (what appears to be) the 
essentially ad hoc character of Pritchard’s interpretation of Greenspan’s theo- 
retical result, the general trends of this interpretation and the observations are 
similar over the entire range of comparison (0.8 < lc < 3.2), and the agreement 
is within the experimental scatter for 0.8 < k < 1.3. 

We compare Pritchard’s measurements with the approximation provided by 
(6.2) above, in which Z is the radius of the sphere and D = 1 (the latter equivalence 
is strictly correct only for k -+ 0). Substituting ( 2 . 7 ~ )  and (4.9) into (2.1) and 
letting y -+ 0, we obtain 

(U - u)/ U -+ + $k2{ Jx(-~ - ( t  - x1-l- t ( t  - x) ( t  - ZI  -3} 
( k y t I t - x l - l +  0) ( 6 . 3 ~ )  

= lxl-3+Bk21x1-’t2(t-x)-2 (X < 0, Y = 0). (6.3b) 

This result is plotted in figure 2 as a function of the Rossby number, ilk, for 
1x1 = 4 and kt = Sn (true time = 47r/sZ) and compared with Pritchard’s experi- 
mental points. The agreement is within the experimental scatter over the entire 
range of comparison, 0.8 < k < 3.2, despite the fact that the equivalence between 
dipole and sphere is theoretically correct for only k: + 0. The agreement for the 
larger values of k ,  especially I% > 2,  may be fortuitous, as steady-$ow calculations 
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of the dipole moment (Stewartson 1958; Miles 1969) imply that it is a decreasing 
function of k. We again emphasize that the implicit assumption of unseparated 
flow may reasonably be expected to hold in accelerated, but not in steady, flow. 

0.6 

2 0.4 
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I 
b 
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0.2 

1.25 
0 
0.25 0.5 0.75 1 .o 

U/ZQl 

FIGURE 2. The axial velocity ahead of a sphere for Iz] = 4 and kt = 877, as calculated 
from (6.3b) on the hypothesis that the sphere can be approximated by a single dipole 
(solid curve) and as observed by Pritchard (1969) (small circles). 

Letting t/lxl -+ coin (5 . la) ,  we obtain the steady-state velocity (see Miles 1969 
for details) 

( U - u ) / U  N 1 ~ 1 - ~ + + k ~ 1 ~ 1 - ~  ( t / l ~ l  + ~ 0 ,  y = 0). (6.4) 

The term &k21z]-l, which represents the effect of rotation, is larger than 121-5, 
which would be the only component for an irrotational flow, for 1x1 > J Z / k ;  
moreover, the contrast is even larger for steady flow than during the transient 
development. This reinforces the suggestion made in § 1, namely that the axial 
flow observed upstream of a moving body in a rotating flow of finite dimensions 
might easily be interpreted as a Taylor column under circumstances in which 
it could be satisfactorily explained without discarding the hypothesis of no 
upstream waves. 

The dominant term in (6.4) has a rather simple generalization for points off 
the axis, which may be inferred from (5.7), namely 

( U - U ) / U  N +k21xl-1Jo(ky) (t/lzJ -+a), (6.5) 

which predicts a (first) reversal of the induced flow at ky = 2.40. Pritchard (1969, 
figure 4) reports measurements of the radial velocity profile for k = 2.41 that 
exhibit such a reversal at  y = 1.1. The zero-Rossby-number, disk model, on the 
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other hand, predicts a first reversal a t  y = 1-7-1.8 (ky = 4.2). The agreement 
provided by (6.5) could be coincidental; moreover, the measured velocity proiile 
does not represent a steady state (this discrepancy is more important at  larger dis- 
tances from the sphere and may be responsible for the less satisfactory agreement 
between the observed and theoretical profiles for ky > 2.4). Additional data, 
especially for smaller values of k, could resolve this point. 
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